36,368 research outputs found

    Autonomous attitude using potential function method under control input saturation

    Get PDF
    The potential function method has been used extensively in nonlinear control for the development of feedback laws which result in global asymptotic stability for a certain prescribed operating point of the closed-loop system. It is a variation of the Lyapunov direct method in the sense that here the Lyapunov function, also called potential function, is constructed in such a way that the undesired points of the system state space are avoided. The method has been considered for the space applications where the systems involved are usually composed of the cascaded subsystems of kinematics and dynamics and the kinematic states are mapped onto an appropriate potential function which is augmented for the overall system by the use of the method of integrator backstepping. The conventional backstepping controls, however, may result in an excessive control effort that may be beyond the saturation bound of the actuators. The present paper, while remaining within the framework of conventional backstepping control design, proposes analytical formulation for the control torque bound being a function of the tracking error and the control gains. The said formulation can be used to tune to the control gains to bound the control torque to a prescribed saturation bound of the control actuators

    Effects of the Electronic Structure, Phase Transition and Localized Dynamics of Atoms in the Formation of Tiny Particles of Gold

    Full text link
    In addition to the self-governing properties, tiny metallic colloids are the building blocks of larger particles. This topic has been a subject of many studies. Tiny particles of different sizes developed under three different experiments are discussed in this work. The development of a tiny-sized particle depends on the attained dynamics of atoms. When atoms of the compact monolayer assembly bind by a nanoenergy packet, the developed tiny-sized particle elongates atoms of arrays into the structures of smooth elements at the solution surface. The impinging electron streams at a fixed angle can elongate the already elongated atoms of arrays. Travelling photons along the interface influence the modified atoms. Gold atoms can also develop different tiny particles inside the solution. In addition to the dynamics of atoms, miscellaneous factors can contribute in the development of such tiny particles. Atoms in the form of tiny clusters can also amalgamate to develop a tiny-sized particle. In the third kind of tiny particle, amalgamated atoms can bind by executing electron dynamics. However, not all of the atoms can bind by the electron dynamics. This study very concisely highlights the fundamental process of developing a variety of tiny particles in which electronic structure, phase transition and localized dynamics of gold atoms influence the structure. The study targets the specific discussion that how atoms of tiny-sized particles bind, and how travelling photons along the air-solution interface influence their structure. Several possibilities may be opened through pulse-based process to develop engineered materials

    Large angle reorientation manoeuvre of spacecraft using robust backstepping control

    Get PDF
    The nonlinear control design problem for large angle reorientation manoeuvre of spacecraft has a proper structure for the direct application of backstepping design as its dynamics and kinematics are naturally in a cascade form. In this paper, the robustness of the backstepping control against the uncertainties in the moment of inertia matrix is investigated and a sufficient condition for the robust stability is derived. Numerical simulations show the validity of the condition

    Polymer packaging and ejection in viral capsids: shape matters

    Full text link
    We use a mesoscale simulation approach to explore the impact of different capsid geometries on the packaging and ejection dynamics of polymers of different flexibility. We find that both packing and ejection times are faster for flexible polymers. For such polymers a sphere packs more quickly and ejects more slowly than an ellipsoid. For semiflexible polymers, however, the case relevant to DNA, a sphere both packs and ejects more easily. We interpret our results by considering both the thermodynamics and the relaxational dynamics of the polymers. The predictions could be tested with bio-mimetic experiments with synthetic polymers inside artificial vesicles. Our results suggest that phages may have evolved to be roughly spherical in shape to optimise the speed of genome ejection, which is the first stage in infection.Comment: 4 pages, 4 figure

    Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs

    Get PDF
    Various novel 10-alkyl-2-deoxo-2-methylthioflavin-5-oxides and their 2-alkylamino derivatives were prepared by facile nitrosative cyclization of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones followed by nucleophilic replacement of the 2-methylthio moiety by different amines, and acidic hydrolysis of the 2-methylthio moiety afforded the corresponding flavin derivatives. 2-Deoxo-2-methylthio-5-deazaalloxazines and 2-deoxo-2-methylthioalloxazine-5-oxides were also prepared by Vilsmeier reaction and by nitrosation of 6-anilino-2-methylthiopyrimidin-4(3H)-ones, respectively. Then, they were subjected to nucleophilic replacement with appropriate amines to produce the corresponding 2-alkylamino derivatives. Regiospecific N-3-alkylation of 2-deoxo-2-methylthioalloxazine-5-oxides was carried out with various alkylating agents in the usual way, The antitumor activities against CCRF-HSB-2 and KB tumor cells have been investigated in vitro, and many compounds showed promising antitumor activities. Furthermore, AutoDock molecular docking into PTK (PDB: 1t46) has been done for lead optimization of the aforementioned compounds as potential PTK inhibitors

    Josephson effect in mesoscopic graphene strips with finite width

    Full text link
    We study Josephson effect in a ballistic graphene strip of length LL smaller than the superconducting coherence length and arbitrary width WW. We find that the dependence of the critical supercurrent IcI_{c} on WW is drastically different for different types of the edges. For \textit{smooth} and \textit{armchair} edges at low concentration of the carriers IcI_{c} decreases monotonically with decreasing W/LW/L and tends to a constant minimum for a narrow strip W/L1W/L\lesssim1. The minimum supercurrent is zero for smooth edges but has a finite value eΔ0/e\Delta_{0}/\hbar for the armchair edges. At higher concentration of the carriers, in addition to this overall monotonic variation, the critical current undergoes a series of peaks with varying WW. On the other hand in a strip with \textit{zigzag} edges the supercurrent is half-integer quantized to (n+1/2)4eΔ0/(n+1/2)4e\Delta_{0}/\hbar, showing a step-wise variation with WW.Comment: 4 pages, 3 figure

    Bubble Nucleation of Spatial Vector Fields

    Full text link
    We study domain-walls and bubble nucleation in a non-relativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation dependent domain-wall tension, σ(θ)\sigma(\theta). We then use this tension to calculate the critical bubble shape. The longitudinally oriented domain-wall tends to be the heaviest, and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.Comment: version 4, correction in the citation
    corecore